Solution Bank

Chapter review 3

1 **a**
$$f(x) = \frac{1}{4-x} + 3$$

 $f(3.9) = \frac{1}{0.1} + 3 = 13$
 $f(4.1) = -\frac{1}{0.1} + 3 = -7$

b There is an asymptote at x = 4 which causes the change of sign, not a root.

c
$$f(x) = 0 \Rightarrow \frac{1}{4-x} + 3 = 0$$

$$\frac{1}{x-4} = 3$$

$$1 = 3x - 12 \Rightarrow x = \frac{13}{3}$$
So $\alpha = \frac{13}{3}$

2
$$x^3 - 2x + 2 = 0$$

Let $f(x) = x^3 - 2x + 2$

а	f (a)	b	f (b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
-1	3	-2	-2	-1.5	1.625
-1.5	1.625	-2	-2	-1.75	0.140625
-1.75	0.140625	-2	-2	-1.875	-1.84179
-1.75	0.140625	-1.875	-1.84179	-1.8125	-0.32934
-1.75	0.140625	-1.8125	-0.32934	-1.78125	-0.08914

Two successive approximations give x = -1.8, accurate to 1 d.p.

Solution Bank

3
$$x^3 - 12x - 7.2 = 0$$

Let
$$f(x) = x^3 - 12x - 7.2$$

$$f(-4) = -23.2$$

$$f(-2) = 8.8$$

$$f(0) = -7.2$$

$$f(3) = -16.2$$

$$f(4) = 8.8$$

There is a sign change and hence a root in each of the intervals [-4, -2], [-2, 0] and [3, 4].

The equation therefore has one positive root and two negative roots.

$$f'(x) = 3x^2 - 12$$

The positive root lies in the interval [3, 4]. Using $x_0 = 3$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$=3-\frac{-16.2}{15}$$

$$=4.08$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$=4.08 - \frac{11.757312}{37.9392}$$

$$=3.7701012$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

$$=3.7701012 - \frac{1.1457338}{30.6409892}$$

$$=3.7327090$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}$$

$$=3.7327090 - \frac{0.0157613}{29.7993494}$$

$$=3.7321800$$

Two successive approximations give x = 3.73 (3 s.f.)

4 a

b The line meets the curve at two points, so there are two values of x that satisfy the equation $\frac{1}{x} = x + 3$.

So
$$\frac{1}{x} = x + 3$$
 has two roots.

$$c$$
 $\frac{1}{x} = x + 3 \Rightarrow 0 = x + 3 - \frac{1}{x}$

Let
$$f(x) = x + 3 - \frac{1}{x}$$

$$f(0.30) = (0.30) + 3 - \frac{1}{0.30} = -0.0333...$$

$$f(0.31) = (0.31) + 3 - \frac{1}{0.31} = 0.0841...$$

f(0.30) < 0 and f(0.31) > 0 so there is a change of sign, which implies there is a root between x = 0.30 and x = 0.31.

d
$$\frac{1}{x} = x + 3$$

$$\frac{1}{x} \times x = x \times x + 3 \times x \quad \text{Multiply by } x.$$

$$1 = x^2 + 3x$$

So
$$x^2 + 3x - 1 = 0$$

e Using
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 with

$$a = 1, b = 3, c = -1$$

$$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(1)(-1)}}{2(1)}$$

$$=\frac{-3\pm\sqrt{9+4}}{2}=\frac{-3\pm\sqrt{13}}{2}$$

So
$$x = \frac{-3 + \sqrt{13}}{2} = 0.3027...$$

The positive root is 0.303 to 3 d.p.

Solution Bank

Pearson

5 **a**
$$g(x) = x^3 - 7x^2 + 2x + 4$$

 $g'(x) = 3x^2 - 14x + 2$

b Using
$$x_0 = 6.6$$
,

$$x_1 = x_0 - \frac{g(x_0)}{g'(x_0)}$$

$$= 6.6 - \frac{g(6.6)}{g'(6.6)}$$

$$= 6.6 - \frac{6.6^3 - 7(6.6^2) + 2(6.6) + 4}{3(6.6^2) - 14(6.6) + 2}$$

$$= 6.606 \text{ correct to 3 d.p.}$$

c
$$g(1) = 0 \Rightarrow x - 1$$
 is a factor of $g(x)$
 $g(x) = (x-1)(x^2 - 6x - 4)$
 $(x-1)(x^2 - 6x - 4) = 0$
Other two roots of $g(x)$ are given by

$$\frac{6 \pm \sqrt{36 + 16}}{2} = \frac{6 \pm \sqrt{52}}{2} = 3 \pm \sqrt{13}$$

d Percentage error:

$$\frac{6.606 - \left(3 + \sqrt{13}\right)}{3 + \sqrt{13}} \times 100 = 0.007\%$$

6
$$\cos x = \frac{1}{4}x \Rightarrow \cos x - \frac{1}{4}x = 0$$

Let
$$f(x) = \cos x - \frac{1}{4}x$$

$$f(1.0) = 0.290...$$

$$f(1.4) = -0.180...$$

By similar triangles:

$$\frac{1.4 - x_1}{x_1 - 1} = \frac{0.180...}{0.290...}$$

$$0.290...(1.4 - x_1) = 0.180...(x_1 - 1)$$

$$0.470...x_1 = 0.586...$$

$$x_1 = 1.25$$
 (3 s.f.)

7
$$f(x) = x^3 - 3x^2 + 1$$

a A sketch of the graph shows that $x^3 - 3x^2 + 1 = 0$ has three roots.

Solution Bank

7 **b**
$$f(x) = x^3 - 3x^2 + 1$$

 $f'(x) = 3x^2 - 6x$
Using $x_0 = -0.5$
 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
 $= -0.5 - \frac{0.125}{3.75}$
 $= -0.5333333$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$
 $= -0.5345760$
 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$
 $= -0.5345760 - \frac{-0.0100810}{4.0647705}$
 $= -0.5320959$
 $x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}$
 $= -0.5320959 - \frac{-0.0000283}{4.0419535}$
 $= -0.5320890$

So there is a root at x = -0.532 correct to 3 decimal places.

Using
$$x_0 = 0.6$$

 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
 $= 0.6 - \frac{0.136}{-2.52}$
 $= 0.6539682$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$
 $= 0.6539682 - \frac{-0.0033379}{-2.6407861}$
 $= 0.6527042$
 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$
 $= 0.6527042 - \frac{-0.0000015}{-2.6381569}$
 $= 0.6527036$

= 0.652/036So there is a root at x = 0.653 correct to 3 decimal places.

Using
$$x_0 = 3$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$= 3 - \frac{1}{9}$$

$$= 2.8888889$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$= 2.8888889 - \frac{0.0727023}{7.7037037}$$

$$= 2.8794516$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

$$= 2.8794516 - \frac{0.0005040}{7.5970150}$$

$$= 2.8793853$$

So there is a root at x = 2.879 correct to 3 decimal places.

Solution Bank

Challenge

a
$$f(y) = y^2 - 6y + 7$$

 $f(4) = -1$
 $f(5) = 2$

There is a sign change so there is a root between y = 4 and y = 5.

$$f(1) = 2$$

$$f(2) = -1$$

There is a sign change so there is a root between y = 1 and y = 2.

b
$$f(y) = y^2 - 6y + 7$$

 $f'(y) = 2y - 6$
Using $y_0 = 5$
 $y_1 = y_0 - \frac{f(y_0)}{f'(y_0)}$
 $= 5 - \frac{2}{4}$
 $= 4.5$
 $y_2 = y_1 - \frac{f(y_1)}{f'(y_1)}$
 $= 4.5 - \frac{0.25}{3}$
 $= 4.4164164$
 $y_3 = y_2 - \frac{f(y_2)}{f'(y_2)}$
 $= 4.4164164 - \frac{0.0069444}{2.8328328}$
 $= 4.4139650$
 $y_4 = y_3 - \frac{f(y_3)}{f'(y_3)}$
 $= 4.4139650 - \frac{-0.0007030}{2.8279300}$
 $= 4.4142136$
 $y_5 = y_4 - \frac{f(y_4)}{f'(y_4)}$
 $= 4.4142136 - \frac{0.0000001}{2.8284272}$
 $= 4.4142136$
So $y = 4.4142136$
So $y = 4.4142136$

y = 4.4142 correct to 5 significant figures.